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® |mportance of initial conditions to the accuracy of
Numerical Weather Prediction

* Variational technique the method of choice operational
numerical weather prediction centers

® Operational run-time requirements are stringent
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® Serial version of the 3DV AR system originally
developed by the NCAR for use with the Penn

State/NCAR Mesoscale Model Version 5 (MM5)

* MM5 3DV AR adopted as the starting point for the
parallel WRF 3DVAR

® System currently providesinitial conditions for MM5
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J0=3+J° =—;(x—xbfB-l(x—xb)+—§(y—y°>T(E+F)‘1<y—y")

y = Hx where H is the “observation operator”

F = Representivity (observation operator) error
E = Observation (instrumental) error
B = Background error

The problem can be summarized as the iterative
solution of the above equation to find the analysis state
X2 that minimizes J(X)
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® For amodel state x with n degrees of freedom
minimization of J(X) requires O(n?) calculations

® For atypical NWP model n ~ 106 — 107 (number
of grid-points times number of independent
variables)

® The number of calculationsis reduced to O(n)
by preconditioning the problem via a control
variablevbtransform defined by X’ = Uv, where
X =X —X
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Using the incremental formulation (Courtier, 1994) and the

control variable transform, our previous equations may be
rewritten:

J(v)=J°+J° :%VTV+%(y°'—HUV)T(E+F)_1(y°'—HUV)
where

X = Uv

X' =X —xP

y® =y°—H(x)

H is the linearization of the potentially nonlinear observation
operator H
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® Use of linear control variable transforms allows
the straightforward use of adjointsin the
calculation of the gradient of the cost function

® Modern minimization techniques (e.g. Quasi-
Newton, preconditioned conjugate gradient) are
used to efficiently combine cost function,
gradient and the analysis information to produce
the “optimal” analysis
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The minimize cost function process consists of the
following steps.

(1) Apply the conjugate gradient method to find
the descent direction in the control variable v
and the stepsize to be taken down the descent
direction

(2) Calculate the new cost function J(v) and its
gradient V J

(3) Check the norm of V,J for convergence and
Iterate steps 1 through 3 until the norm of V. J
IS satisfactorily small
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The bulk of the computation is in step two, which is
outlined below:

*Apply the control variable transform x’ = Uv to get
from control space to model grid space

*Apply the observation operator y° = Hx' and
compute the residual vector y° — vy’

*Compute the cost function J and gradient VJ° In
observation space

*Apply the adjoint transforms to VJ° and obtain the
total cost function gradient V,,J back in control
variable space
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®* The WRF framework 1nsulates the scientist from
parallelism by encapsulating and hiding details
that are of no direct concern to the model

® |t isorganized functionally as a three-level
nierarchy, with the low-level model layer
orotected from architrecture-specific details
such as message—{passing libraries, thread
packages, and |/O libraries

* All management of domain decomposition,
processor topologies, and other aspects of
parallelism are handled by the framework
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® For use with the framework, 3DVAR mode
subroutines are written to be callable over an
arbitrary rectangular subset of the three-
dimensional model domain

® The framework ingests the 3DVAR domain size
from anamelist file and calculatestile, patch,
and memory dimensions for each 2-D
decomposition
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* The implementation proceeded in three mgor
steps

1. The control variable transform (and adjoint)

2. The observation operator (and adjoint)

3. The conjugate gradient algorithm
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X=Uv=UUUVv

The individual operators represent in order horizontal,
vertical and change of physical variable transforms

| U, Is performed using recursive filters

U, Is applied viaa projection from eigenvectors of a
climatological estimate of the vertical component of
background error

U, converts control variables to model variables (e.g. u, v,

T, p, ) and involves the use of FFTs
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e The recursive filter and FFT sweeps that are applied In
the x and y directions demand data in the entire x and y
dimensions, respectively, be known to each processor

« The framework provides a set of matrix transpose
- operators for transposing 3D fields across processors

* Applying the recursive filter in each horizontal dimension
requires the following sequence of transpose operations:

(X.y) = (v,2) = (X,2) = (X.y)

where the notation (x,y) means decomposition over the x
and y dimensions.
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® Performance runs on other platforms (SGl,
Fujitsu VPP5000, Linux cluster, and Alpha
EXO cluster)

® |mprove memory management
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